Session 2: Abstractions and Tools

FPGA ’21, February 28—March 2, 2021, Virtual Event, USA

Interactive Debugging at IP Block Interfaces in FPGAs

Marco Antonio Merlini
marco.merlini@utoronto.ca
University of Toronto
Toronto, Ontario, Canada

ABSTRACT

Recent developments have shown FPGAs to be effective for data
centre applications, but debugging support in that environment has
not evolved correspondingly. This presents an additional barrier to
widespread adoption. This work proposes Debug Governors, a new
open-source debugger designed for controllability and interactive
debugging that can help to locate issues across multiple FPGAs.

A Debug Governor can pause, log, drop, and/or inject data into
any streaming interface. These operations enable single-stepping,
unit testing, and interfacing with software. Hundreds of Debug
Governors can fit in a single FPGA and, because they are transparent
when inactive, can be left “dormant” in production designs.

We show how Debug Governors can be used to resolve functional
problems on a real FPGA, and how they can be extended to memory-
mapped protocols.

CCS CONCEPTS

« Hardware — Design for testability; « Software and its engi-
neering — Software testing and debugging.
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1 INTRODUCTION

In the past decade, research has confirmed that FPGAs are worthy
of use in data centres. However, the difficulty of developing for
them is a significant barrier to adoption, and this is particularly
true when it comes to debugging. In [22], Putnam et. al. argue that
“hardware bugs or faults inevitably occur at scale that escape testing
and functional validation,” and that diagnosis “requires visibility
into the state of the hardware leading up to the point of failure”
In addition to visibility, we believe that practical and efficient
debugging requires immediacy [26], i.e., allowing a developer to
interact with their design as easily as they would objects in the
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physical world. A developer seldom knows where to look when
first encountering a bug. Instead, they start to make guesses and to
test hypotheses. As their understanding improves, they need to be
able to switch focus from one part of their design to another.

This work proposes an approach to FPGA debugging that pri-
oritizes controllability and interactivity. Our result is a simple, yet
general instrumentation that is effective for single FPGAs and scales
naturally to multiple FPGAs in a data centre application. This is
meant to complement existing tools by operating at a higher level
of abstraction; Debug Governors can quickly narrow down the
approximate location of a problem, such as to a particular FPGA,
at which point any existing low-level debugger can take over. In
addition, we chose to make this new development open-source [19]
to foster an ecosystem of collaboration.

This paper is organized as follows. Section 2 presents an overview
of our proposed debugging tools. Section 3 discusses background
and related work. Section 4 presents the hardware architecture of
our debugger, and Section 5 evaluates it. Finally, Section 6 concludes
the paper and discusses future work.

2 OVERVIEW

We illustrate our approach with a running example where we debug
the messages from a sender (Alex) to a receiver (Brittany). To do so,
we pass the stream through a Debug Governor, as shown in Fig. 1.

Commands/Injections
Logs

Figure 1: Data stream instrumented with a Debug Governor.

A Debug Governor can “govern” a stream of data by enabling
any subset of the following four operations:

Pause: Alex is prevented from sending data.
Log: All data sent from Alex are duplicated and sent
to the Governor’s log output. The Governor will
automatically pause incoming data from Alex if the
receiver of the logs is not ready.
Drop: Alex is allowed to send data into the Governor,
but they are not sent to Brittany (though they can
still be logged).
Inject: Data from the Governor’s inject input are
sent to Brittany, pausing Alex if necessary.
We will call these the Pause, Log, Drop, and Inject (PLDI) operations.
There are sixteen configurations for the Debug Governor, as given
by the powerset of {Pause, Log, Drop, Inject}. Importantly, when
no PLDI operations are active, a design with Debug Governors
operates identically to one without.
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Each of the PLDI operations is useful on its own. Logging allows
a developer to observe intermediate values and is always needed
for debugging. Pause-ing can be used to force a certain sequence of
events, or to halt a high-bandwidth output that is causing conges-
tion in a network. Dropping can be used to test a design’s resilience
to lost data. We place special emphasis on the Inject operation,
which is rarely seen in other FPGA debugging tools. Interactive
control can produce clues that are unavailable with Logging alone.
For example, if a module is producing bad outputs, the correct out-
puts could be Injected instead to check if the rest of the design is
working as intended. Alternatively, by Injecting on one Governor
and Logging on another, unit tests can be performed in situ.

Useful debugging actions can be obtained applying several PLDI
operations simultaneously. One noteworthy configuration is “single-
stepping”. Debug Governors include a controller that, given a num-
ber n, can automatically re-enable Pause-ing after exactly n mes-
sages are Logged. Alternatively, consider the configuration in Fig. 2,
where Debug Governors are shown with the letters “DG”. By Logging
and Dropping on DG1, all data leaving Alex can be redirected to
the input of an HDL simulation of Brittany. At the same time, by
Pause-ing and Injecting on DGZ2, the simulation outputs can be

sent to Camilo.

L HDL Slmulatlon

Figure 2: Bypassing a core and replacing with a software sim-
ulation.

3 BACKGROUND AND RELATED WORK

This section first provides a summary of FPGA debugging. We then
describe the bus protocols used in this work. Finally, we present
related work.

3.1 FPGA Debugging

A common FPGA debugging method is to add an embedded logic
analyzer [15, 28] to a design. This allows a developer to see run-
time values, but can only observe a limited number of signals for a
short amount of time. There exist several approaches to increase
an analyzer’s effective capacity [7, 11, 14]. Even with these tech-
niques, developers frequently need to change the placement of
analyzers in their design, involving a long process of recompilation
and potentially troubleshooting timing failures.

There are a number of alternatives to embedded logic analyzers.
Most FPGAs offer a state readback feature that can provide 100%
observability, but cannot be used to debug circuits at speed [12].
Synplify’s TotalRecall [18, 21] can offer 100% visibility into circuits
running at speed, but requires most or all of the original design to
be instantiated twice. When using High-Level Synthesis (such as
with the academic tools in [6] and [25]), it is possible to provide
a source-level debugging experience [5, 10, 13] though still only
for a subset of signals at a time. The Flight Data Recorder in [22]
makes better use of a limited frame buffer by only saving signals of
interest and not on every clock cycle.
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Comparatively, few controllability tools exist for FPGAs. A de-
veloper can add special cores [16, 29] to a design, allowing them
to view and/or set individual wires in their design. These “virtual
switches” can be used for simple tasks such as resetting compo-
nents, setting constants, or individual clock enables, but are unable
to inject transactions into bus protocols. For more control, an FPGA
design could be instrumented with a scan chain, but the area over-
head is about 85% (compared to 5-30% for ASIC scan chains) [27].
This cost can be reduced to about 45% by combining scan chains
with readback [24], or can instead be integrated into the FPGA
fabric itself [23].

3.2 Handshaking and AXI Stream

Handshaking is a common idiom for managing transmission from
a sender to a receiver, where both are driven by the same clock.
Fig. 3 illustrates the technique, and it is described as follows. Alex
drives a datum on a set of parallel lines as well as a valid bit, all of
which are connected to Brittany. Brittany drives a ready bit which
is connected back to Alex. Both consider the datum to have been
sent if and only if both valid and ready are asserted at a clock
edge. A single transmitted datum is known as a flit.

datum > datum )
Alex valid »valid Brittany
ready« ready

Figure 3: Handshaking.

The AXI Stream protocol [2] is a backwards-compatible exten-
sion of handshaking. Alongside the datum, valid, and ready sig-
nals (which AXI Stream renames to TDATA, TVALID, and TREADY,
respectively), an AXI Stream sender may add any subset of sidechan-
nels that are transmitted in parallel to TDATA. The AXI Stream spec-
ification defines a number of standard sidechannels, such as TLAST
to signify end-of-packet or TDEST to specify a destination. Debug
Governors specifically support AXI Stream because of its wide-
spread use. However, AXI Stream is identical to handshaking when
the (optional) sidechannels are unused. Thus, Debug Governors
also support basic handshaking and are immediately applicable in
this more general context.

3.2.1 Addressing with AXI Lite. AXI Lite extends AXI Stream to
support memory-mapped transactions. The AXI Lite protocol con-
tains five separate AXI Stream channels: ARADDR for read address,
RDATA for read data, AWADDR for write address, WDATA for write data,
and BRESP for write responses. Address and data must both be pro-
vided in read/write transactions. Figure 4 shows the arrangement
of these channels: each arrow represents an AXI Stream and points
from the sender to the receiver of that channel. Note that an AXI
Lite sender acts the AXI Stream receiver on the RDATA and BRESP
channels.

ARADDR |
Alex | RDATA Brittany
(AXI Lite AWADDR (AXI Lite
sender) WDATA receiver)
BRESP

Figure 4: Arrangement of AXI Stream channels in AXI Lite.
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3.3 Related Work

The Am2045 [4], a custom architecture for highly parallel comput-
ing, is a single ASIC with 336 RISC CPUs and programmable inter-
connect. The runtime reconfiguration capabilities of the Am2045
require the programmer to flush FIFOs and halt all transmissions
until all CPUs have been programmed and started. These two oper-
ations are identical to our Drop and Pause operations (respectively),
and the circuits that implement them are identical to ours. It is not
clear whether the flush and hold controls in the Am2045 could be
controlled individually.

Dan Gisselquist has recently published an in-FPGA instrumen-
tation tool for observing and controlling the first input and final
output of a chain of multiple AXI Stream components [9]. The
developer can send arbitrary inputs into the chain and verify that
the final outputs are correct. The instrumentation is only designed
for use at the “top-level” inputs and outputs of a pipeline, and
unintended for use as a pass-through component like our Debug
Governors.

4 DESIGN

Fig. 5 shows an overview of our instrumentation. Debug Governors
can be added between any sender/receiver pairs and are controlled
by a daisy-chained stream of commands. These commands can
selectively enable PLDI operations on any Debug Governor. All
Debug Governors internally convert their Log outputs to a standard
format, which are combined by an n-to-1 arbiter. Ultimately, a
developer controls an entire Debug Governor network with one
Command input and one Log output.

The internal structure of a Debug Governor is shown in Fig. 6.
Section 4.1 describes the Handshake Governor, and details on the
other blocks can be found in [20, §3]. Section 4.2 shows how the
Debug Governor can be extended to memory-mapped protocols.

. >

DG DG

— 11 $2 — — 12 Sn -

RN

Figure 5: Complete Debug Governor instrumentation. The s;
and r; ports mean “Sender i” and “Receiver i”.

Commands —* ——

DG

N

Debug Governor

Delay Stage T_'
(optional) : Commands

Commands
(32 bits) Control FSM T (32 bits)
From éinject pause log drop receipt To

Sender : . Receiver

: Handshake ; - >

(n bits) Governor 5 (n bits) -
(Section4.1)) H-------- - Logsand
Width Adapter © Receipts
.................................................... (32 bitS)

Figure 6: Top-level view of a Debug Governor.

4.1 Handshake Governor

The Handshake Governor implements the PLDI operations by ma-
nipulating valid and ready bits. It has extra ports for Injection
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input and Log output as well as four separate input bits to control
the four debugging operations. In this section, all handshaked con-
nections are shown with our datum, valid, and ready notation, but
recall that this is forward-compatible with the AXI Stream protocol.

Fig. 7 shows how a handshaked connection can be paused. The
datum line is directly connected from Alex to Brittany. If pause is
low, then (Brittany_valid = Alex_valid) and (Alex_ready = Brit-
tany_ready). In other words, the valid and ready signals are un-
changed. However, if pause is high, then Brittany_valid is forced
low and Alex_ready is forced low, meaning that neither will ever
consider data to be sent.

pause

datum datum

Alex valid >_O"D‘Valid Brittany
ready;(Fready

Figure 7: Pause circuit.

The dropping circuit is shown in Fig. 8. When drop is not enabled,
valid and ready pass through unchanged. However, when drop
is high, Alex thinks Brittany is always ready but Brittany thinks
Alex is never valid.

drop

datum datum

Alex valid >_O"jivalid Brittany
ready‘g;ready

Figure 8: Drop circuit.

The injection circuit shown in Fig. 9 allows a second sender
to send flits to Brittany. When Inject_valid is low, Alex_valid,
Alex_datum and Brittany_ready pass through unchanged. When
Inject_valid is high, Brittany instead sees the Injection data, and
Alex_ready is forced low. In effect, the Inject input has higher
priority than Alex.

datum;
. valid
Inject ready
—_— 1 1datum
datum 0
Brittany
Alex 144 ) ——{valid
ready—@ ready

Figure 9: Inject circuit.

The logging circuit is shown in Fig. 10 and is the most subtle. A
copy of the Drop circuit is used to enable/disable logging. If log_en
is low, then Log_ready (as seen through the “Drop” block) appears
to be high, and Log_valid is forced low.

When log_en is high, however, Log_ready and the output to
Log_valid pass through the “Drop” block unchanged. Gate I
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makes sure Alex only sends flits when both Brittany and the Log
are ready. Gates I and I3 make sure flits are never sent to just one
of the receivers; if Log_ready is low, Brittany_valid is also forced
low (and vice-versa).

log_en
datum
— Drop valid Log

ready
datum datum
valid r Iy valid

Alex . Brittany
L

readyw44~{:2£}“ ready

Figure 10: Log circuit.

The Handshake Governor is obtained by chaining together the
circuits for each operation. However, the PLDI operations are not
commutative and we must choose the order very carefully. The
precise definitions of each operation, as given in Section 2, imply
the following properties:

e When Pause-ing, nothing can be Logged or Dropped, but

Injections can proceed.

e When Dropping, Logging and Injecting are still possible.
There are only two orderings that satisfy these properties: PLDI
and LPDL. In the authors’ personal opinions, “PLDI” rolls off the
tongue better? and the final arrangement is shown in Fig. 11.

pause log_en drop
datum
Inject valid
ready|«
Y v Y vY
datum—>| > > > > datum
Alex validr+{Pausel» Log (| Drop |+ Inject—{valid Brittany
ready [« | < < «—ready
I - datum
»\valid Log
ready

Figure 11: The Handshake Governor is obtained by chaining
together the PLDI operations (in that order).

4.2 Extension to AXI Lite

Fig. 12 shows how Debug Governors can apply to AXI Lite. Each
stream on the AXI Lite bus is instrumented with a Handshake
Governor, and the whole is managed with an FSM. A command
is structured as an Input Operation and a Data Value. The Input
Operation is decoded by the FSM and used by the PLDI Enable Logic
to send the proper enable signals to the Handshake Governors. The
Data Value is used for specifying the value to inject on a stream.

ITo be forward-compatible with the AXI Stream protocol, combinational paths from
Brittany_ready to Brittany_valid have been eliminated.

2One disadvantage, however, is the slight risk of being confused with the well-known
Programming Language Design and Implementation conference.
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The Input Operation is used to specify Pause, Log, Drop, or
Inject for one or more of the AXI Stream channels. Within the
FSM, each operation results in a different sequence of states. Each
operation in the FSM includes DONE and WAIT states to avoid re-
peated operations, and to wait for proper handshaking respectively.
For example, to Inject on AWADDR and WDATA, the FSM enters a WAIT
state to ensure that in-progress write transactions are completed.
After finishing the Injection, the FSM de-asserts the Injectenable
signal. Since this Injection mimicked a write transcation, Brittany
sends a response on BRESP. This flit must be Dropped because Alex,
not responsible for the write transaction, does not expect a response
from Brittany.

Control| |PLDI Enable
Commands —*| BsMm Logic
ARADDR Handshake ARADDR
Governor
RDATA < Handshake RDATA
Governor
AWADDR Handshake '—> AWADDR
Governor
WDATA Handshake '—> WDATA
Governor
BRESP

Handshake BRESP
Governor

Figure 12: Debug Governor for AXI Lite.

5 EVALUATION

This section presents an evaluation of Debug Governor instrumen-
tation. We first discuss the usability of the instrumentation by going
through an example application. We then give some quantitative
measurements of performance and resource costs.

5.1 Usability

This section demonstrates the usability of Debug Governors by
walking through a typical debugging session. We first describe our
example design; this design contains an intentional bug, and the
reader is challenged to spot the mistake before we reveal it. We
then provide a summary of how we were able to “find” this bug
and correct it by using Debug Governors.

5.1.1 String-to-Number Converter. Our example design is shown
in Fig. 13 and the source (except for “define statements) is given
in Listings 1 and 2. Both modules obey the handshaking protocol
described in Section 3.2.

The str_sender module repeatedly sends out an ASCII string
one character at a time. The str_to_num module parses base-10
numbers that are delimited by non-digit characters. It maintains
a 32-bit register named n_dtm; when an ASCII digit character is
received, n_dtm is multiplied by 10 and the numerical value of the
digit is added to it. When any non-digit character is received, the
current value of n_dtm is output. The WAIT_FIRST_DIGIT state
prevents str_to_num from outputting a number if it hasn’t yet
received any digit characters. Given the string in str_sender as
input, str_to_num should output the repeating sequence (19, 8,
2005, 0, 5, 3759, 1597463007).
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Table 1: Discovering a bug in the example.

str_sender

—>DG1—>

str_to_num

—DG2

Figure 13: Example design with Debug Governors.

Listing 1: Source code for str_sender.

Action

Results/Comments

module str_sender(clk, s_dtm, s_vld, s_rdy);

input clk;
output [ 1 s_dtm; output s_vld; input s_rdy;
wire [35%8 - 1 str =

"19/08/2005: Ox5F3759DF = 1597463007";
reg [5:0] 1 = 0;

always @(posedge clk)
if (s_vld && s_rdy)

i <= (i ==6'd34) 2 0 : i + 1;
assign s_dtm = str[8x(35-i) -1 -: 2];
assign s_vld = 1;
endmodule

Enable stepping
on DG2.
Single-step DG2.
Single-step DG2
five times.
Single-step DG2.

Single-step DG2.

DG2 will Log a flit every time we single-step. DG1 is
still inactive and allows flits to pass normally.

DG2 logs the value 19, as expected.

DG2 logs the values 8, 2005, 0, 5, and 3759, as
expected.

DG2 logs the value 832510767. This is different from
the expected value of 1597463007.

DG2 logs 8. The expected value of 19 was not seen.

Table 2: Understanding the bug.

Action

Results/Comments

Listing 2: Source code for str_to_num.

module str_to_num(clk, s_dtm, s_vld, s_rdy,
n_dtm, n_vld, n_rdy);

input clk;

input [7:0] s_dtm; input s_vld; output s_rdy;
output reg [ ] n_dtm; output n_vld; input n_rdy;
reg [ ] state = “WAIT_FIRST_DIGIT;

wire s_isdigit = (s_dtm >= "0" && s_dtm <= "9");
wire s_handshake = (s_vld && s_rdy);
always @(posedge clk)
case (state)
*WAIT_FIRST_DIGIT:
if (s_handshake && s_isdigit) begin
state <= ‘READ_DIGITS;
n_dtm <= {28'b0, s_dtm[3:01};
end
*READ_DIGITS:
if (s_handshake && s_isdigit)
n_dtm <= {n_dtm[ 1,3'b0}
+{n_dtm[ 1,1'b0}
+{28'b0,s_dtm[3:0]3};
else if (s_handshake && !s_isdigit)
state <= “SEND_NUM;
“SEND_NUM:
state <= (n_vld && n_rdy) ?

*WAIT_FIRST_DIGIT “SEND_NUM;
endcase
assign n_vld = (state == “SEND_NUM);
assign s_rdy = (state != “SEND_NUM);

endmodule

Enable stepping
on DGI1.

Turn off stepping
and turn on
Logging on DG2.
Single-step DG1.
Single-step DGI1.
Single-step DG1.
Single-step DGI1.
Single-step DG1.
Single-step DG1
five times.
Single-step DG1
four times.
Single-step DG1
ten times.
Single-step DG1
two times.

Single-step DGI1.

DG1 will Log a flit every time we single-step. DG2 is
still in stepping mode.

DG2 was trying to output a value but was Paused
because we hadn’t stepped it yet. As soon as stepping
is disabled, it immediately outputs 2005.

DGI1 logs an ASCII ¢ ’ (space) character.

DG1logs a ‘@’ character.

DG1 logs an ‘x’ character and DG2 logs a value of @.
DG1logs a ‘5’ character.

DG1 logs an ‘F’ character and DG2 logs a value of 5.
DG1 logs “3759D’. On the fifth step, DG2 logs 3759.

DG1logs ‘F = ’ (which contains no digits).

DG1 logs ‘1597463007, which is the correct number
from the end of the string.

DG1 logs “19’. DG2 does not log anything. The ‘19’
appears to be part of €159746300719’.

DG1logs ‘/’.DG2 logs ‘832510767°.

Table 3: Testing the solution.

Action

Results/Comments

Single-step DG1
thirty-two times.

DG1 logs ‘08/2005: 0x5F3759DF = 1597463007’
DG2 logs 8, 2005, 9, 5, and 3795.

Injecta ¢ ’ on DG1. DG2 logs the value 1597463007. This is correct!

Single-step DG1
three times.

DG1 logs 19/’. DG2 logs 19. Also correct!

5.1.2  Single-stepping the String to Number Converter. For this ex-
periment, the instrumented string-to-number example from Fig. 13
was loaded onto an FPGA and connected to our user interface over
TCP. Due to space limitations, we only provide a summary of the
debugging session®, but a more detailed example is given in [20,

§3.5.1].

3A screencast of this debugging session is available at https://asciinema.org/a/
JibDBSLxdRSKwACnNGNSNhW3VV. Please scroll down on the linked page for viewing

information.

Table 1 single-steps through DG2 and uncovers two problems:
in the second-last row, we saw the value 832510767 instead of
1597463007 and in the last row we saw 8 instead of 19. Table 2
shows how we found the bug. The first two rows describe how
the Governors were configured. The next seven rows single-step
through DG1 and show correct behaviour. The last three rows show
the root cause: because the string in str_sender is looped, the 19
at the beginning occurs immediately after the 1597463007 at the
end and str_to_num treats it as one big number (that also over-
flows 32-bit precision). The solution is to add a non-digit character
at the end of the string in str_sender. With Debug Governors,
we can confirm this solution is correct without generating a new
bitstream by Injecting a character into DG1 at the right place.
Table 3 demonstrates the results of this proposed solution.
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5.2 Performance

When the Debug Governor is unused, it behaves like direct wires be-
tween Alex and Brittany. The added combinational delay is entirely
due to the Handshake Governor, as seen in Fig. 6. We implemented
the Handshake Governor as two parallel circuits: first, Alex_datum
connects to Brittany_datum through a single multiplexer (inside the
Inject block, Fig. 9); second, the remaining logic manages the hand-
shaking signals. This second circuit has seven inputs (Alex_valid,
Inject_valid, Brittany_ready, Log_ready, pause, log_en, and drop)
and four outputs (Alex_ready, Inject_ready, Brittany_valid, and
Log_valid). However, none of the outputs depend on more than
six of the inputs. On an FPGA with six-input LUTs, the added
combinational delay from Alex to Brittany is only a single LUT!

Now consider the case when the Debug Governor is active.
Injecting a flit requires several commands to program the Inject
control registers, and the Governor must be periodically polled to
determine when the Injection has succeeded. Given these con-
straints, we have found that binary files can be Injected at a rate
of approximately 1 KB per second. Logging, on the other hand, is
only slowed down by the Width Adapter shown in Fig. 6, which
sends a log and its associated metadata using several 32-bit flits.
We have found that logged flits can be transferred at about 55 KB
per second.

5.3 Resource Costs

A major design goal for Debug Governor instrumentation is to
enable broad instrumentation of all streams in a design. In so do-
ing, the developer would never need to edit which streams are
instrumented and recompile their bitstream. This could easily mean
hundreds of Governors are needed on a single FPGA. For this rea-
son, the resource costs of each Debug Governor have been reduced
as much as possible, and the implementation contains many special
cases to further reduce costs. In particular, no Block RAMs are used.
This section presents the number of Lookup Tables (LUTs) and Flip
Flops (FFs) used by the Debug Governors and the n-to-1 arbiter.

The cost of a Debug Governor is determined by the sum of the
bit widths in TDATA, TDEST, and TID, which we denote as w. If the
underlying stream does not include TKEEP, a single Governor costs
about w + 89 LUTs and 3w + 72 FFs, and a plot is shown in Fig. 14.
These formulas become 1.2w + 86 LUTs and 3.33w + 70 FFs when
TKEEP is included.

2,000 [-— : ‘ =
° Flip-Flop cost
1500 L1 3.08w+72.1
’ | | = Look-up table cost |
2 1.04w + 89
S 1,000 -
Q
L
500 |- *
- L
u =
0p | | | | | | | ]
0 100 200 300 400 500 600

w = width of TDATA + width of sidechannels (bits)

Figure 14: Debug Governor costs without TKEEP, as reported
by Vivado 2018.3 Synthesis.
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Consider the following example where a design is instrumented
with thirty Governors, each with w = 64 and including TKEEP. We
find that the Governors themselves consume about 5000 LUTs and
8500 FFs. Furthermore, a 30-to-1 arbiter is needed, which uses an
additional 690 LUTs and 730 FFs. The totals are presented in Table 4
as percentages of resources on several different FPGA boards; note
that the Zedboard is a significantly smaller FPGA than the others.

Table 4: Debug Governor Instrumentation Resource Costs,
as Percentages.

Board FPGA Family LUT % FF%
Alpha Data 8K5 [1]  Kintex Ultrascale 0.9 0.7
Fidus Sidewinder [8] Zynq Ultrascale+ 1.1 0.9
BEEcube BEE4 [30]  Virtex-6 1.7 1.3
Zedboard [3] Zynq 7000 10.7 8.7

6 CONCLUSIONS AND FUTURE WORK

Our work resulted from an observation that an effective debugger
requires two traits: controllability and interactivity. When consult-
ing research colleagues and industry professionals, we also noticed
a significant interest in performance debugging. Existing FPGA
debuggers offer some performance debugging, but little to no con-
trollability. We specifically addressed this in our design. We believe
the result forms a basis for building the tools needed to debug the
multi-FPGA applications that will be run in data centers.

It is possible to extend Debug Governors to support performance
debugging. In future work we may add a transparent Logging mode
that never applies backpressure, but may not log every single flit.
Another extension could be a Logging mode that simply counts flits
instead of Logging actual data. This is completely transparent, and
still allows for useful conclusions. For example, with flit counters
on either end of a FIFO, the developer can see a live view of its
occupancy. Alternatively, by knowing how many flits should be
passing by a certain point, the developer can observe if a particular
module incorrectly drops flits.

It has also come to our attention that triggering should be sup-
ported in hardware. Currently, we can perform triggering in soft-
ware by single-stepping and examining each flit until a condition
is met. Instead, it would be better to eliminate the slow dialogue
with a lab machine and instead extend the Control FSM.

Finally, Section 3.2.1 shows a simple example of building more
complex tools from multiple Governors. Although this section fo-
cuses on the AXI Lite protocol, we can apply the ideas to support
other commonly-used memory-mapped buses, such as Avalon [17].
By allowing for modular debugging, we may develop custom op-
erations such as simultaneously Dropping read transactions while
Injecting, a useful action for prioritizing debug commands.
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