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Street trees play an important role in the urban environment and have positive social impacts, such as
improving human health. However, they can potentially be hazardous if not properly maintained. Although
periodic tree assessments are necessary in urban forest management tasks, such assessments are often ne-
glected because of the lack of trained professionals in local cities. This study aimed to develop a comparison
of image classification to identify the problems associated with trees using a limited number of training
samples using image classification, object detection, and semantic segmentation.
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1. INTRODUCTION have decayed roots, which poses a risk of tree falling
and damaging powerline wires or neighboring houses
when they are blown by strong typhoons during the
monsoon season.

Street trees are considered fundamental elements
of an urban environment. Nagasaki City is located on
the northwest coast of Japan’s Kyushu region with a
population of approximately 400,000, densely built
in a small, reclaimed area surrounded by mountains.
It is known as the second A-bombed city during the
war in 1945. When the Nagasaki International Cul-
ture City Construction Law was passed in 1949,
many trees were planted along the main roads.

However, the problem in Nagasaki City is that few
roads have enough pedestrian zones in which the re-
quired minimum size of the planter for street trees is
50cm x 50cm, whereas the minimum length of one
side of the planter in the US is 90cm-150cm. Naga-
saki City planted relatively large trees in small plant-
ers, such as Chinese tallow, camphor, or Gingko. Fur-
thermore, while mature street trees in San Francisco
are pruned once every three to five years, Nagasaki
City prunes once or twice every year to keep the tree
canopy small. Owing to the small planting strip and
frequent excessive pruning, most street trees in Na-

Fig. 1 Heavily pruned street tree in Nagasaki City

The health and risk of street trees are generally

gasaki city have internal defects and die within 10
years. Currently, approximately 3619 trees are
planted throughout the city; however, many of them
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identified using tree risk assessments. Therefore,
street trees in large cities such as New York, Paris,
and Tokyo are managed by specialists; however,



there are no hired experts who can inspect tree con-
ditions in small cities such as Nagasaki V. Many ap-
plications have been proposed to identify the well-
being of plants, such as that of Bhandarkar et al., but
very few assess the health of street trees. The problem
with street trees is not the general health of the plants,
but the hazard caused by deformation and decay. For
example, the deformation of plants is not usually re-
lated to the degree of plant health, but the defor-
mation of street trees poses a great hazard to roads. It
is crucial to have a tool to identify trees at risk for
inexperienced city officers, because unhealthy trees
in Nagasaki City trees can often pose a significant
risk to pedestrians and the environment (Fig.1).
Demonstrating that this can be done with limited
samples would be a significant result, as has been
shown in other studies, such as Pan et al. »?.

2. METHODOLOGY

The main purpose of this study was to investi-
gate the feasibility of machine learning for assessing
the health of street trees in Nagasaki City. There are
various methods for visual tree risk assessment; how-
ever, defects in trees are basically assessed by the
condition of the root, trunk, and crown, as described
by Leers et al. In the tree risk assessment, hazardous
conditions are assessed by the following categories:
1) ground heaves; 2) hollows; 3) mold; 4) deteriorat-
ing surface/disease; 5) fungi; 6) incline; 7) intrusion;
8) dead branches(Fig. 2). The likelihood of tree fail-
ure is determined by detections within each category.
Among these categories, inspection of dead branches,
8), is not applicable in Nagasaki City because all dead
branches were previously removed ¥ (Fig. 1).

To conduct the experiments, a Google Colabor-
atory notebook was used in a remote setup using an
NVIDIA RTX A6000 GPU, and a prediction model
was built based on RGB images taken with an iPh-
one. The photos were formatted to place the trees on
a vertical centerline, and the ground was placed be-
low the horizontal centerline of the photograph, as
shown in Fig. 3. For roadside trees in Nagasaki City,
there was a total of daytime images of 3619 trees,
consisting of 22 different species and different symp-
toms for each tree. The collected images were sorted
based on the severity of the following three catego-
ries: 1) root heaves; 2) holes; 3) surface defects. The
level of health was assessed using only three catego-
ries with this research because there were few photo-
graphs capturing the incline properly, and there were
few cases of mushrooms and intrusion among the col-
lected images. For better performance, the symptoms
of the trees were detected using transfer learning and
fine tuning. This enabled the classification of images
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with high accuracy regardless of the small sample
size. This classification model is sufficient for cate-
gorizing three symptoms with limited samples.
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3. EXPERIMENTS

Various image classification and object detec-
tion frameworks currently exist. Among them, con-
volutional neural networks (CNNs) and single-shot
detectors (SSD) are the most common techniques for
applied agriculture. Gandhi et al. and Ghoury et al.
have demonstrated applications in agriculture with
CNNs and SSDs. Therefore, the symptoms of the
three diseases were diagnosed in three ways: 1)
CNNs, 2) SSDs, and 3) DeepLabV3 -9,

(1) Convolutional Neural Networks

VGGI16 is a multilayer neural network contain-
ing convolutional and max pooling layers. ReLU and
softmax activations were also used 7.

To detect defects in the tree, the diagnosis was
divided into three classes: heaves, holes, and fungi.
Separate datasets were created for each class and
were trained using VGG16. Because CNNs only clas-
sify one class per image, the test accuracy rate was
only 65%. Even with fine-tuning, CNN’s cannot pro-
duce dependable results. CNNs could be useful for
classifying images with small variations, such as the
satellite imagery classification performed by Kussul
et al.; however, object detection with SSD was con-
sidered to be more appropriate for detecting multiple
symptoms in an image ®.

(2) Single Shot MultiBox Detector

SSD is a framework for boundary-box object de-
tection using deep learning developed by Liu et al.
SSD300, which is capable of achieving high perfor-
mance, was used for this paper. It converts the output
space into a discrete space of a generated bounding
box with different aspect ratios for each feature map
position, combines predictions from multiple feature
maps at different resolutions, and processes objects
of different sizes. This framework is easier to train
and superior to other frameworks, such as YOLO by
Redmon et al. 719

To train the SSD model, images were labelled
from level 2 to level 5, corresponding to an increasing
severity of the symptoms of the trees (Table 1). Fig.
4 shows SSD classification and data flow. During
Step 1, the image was resized to 300 x 300. In Step 2,
8,732 default boxes were generated, and images were
then input into the SSD network, which generated a
default box according to the offset in step 3. Only re-
liable boxes were retained during Step 4, and Step 5
provided the corresponding predicted probabilities in
Step 6 after duplicate boxes were filtered based on
offset information.

Fig. 5 shows the training performances of the
three classes. The loss decreased exponentially, start-
ing at 500 iterations, and continued to decay to a loss
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Table 1 Number of boxes per class

Labels
Class | train test test test test test
(level2) | (level2) | (level2) | (level2) | (overall)
heave| 107 16 14 13 12 55
hole | 143 4 9 8 10 31
fungi| 213 18 13 29 27 87

Step 1. Resize image to 300x300 Step 2. Prepare 8,732 Default Boxes (DBox)

___________

T 1
18,732 DBox offsets,
1and confidences 1
I

Step 3. Input image to SSD network Step 4. Output DBox with high confidence

Step 5. Remove overlapping DBox Step 6. Output Dbox with probability

Fig. 4 Numerical prediction tags
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Fig. 6 IoU Equations

of 1.0. Here, an inference algorithm was applied to
the SSD to avoid overfitting, and this achieved low
loss and high training accuracy.

To contrast the accuracy of SSDs for “heave,”
“hole,” and “fungi,” IoU (a popular evaluation metric
used in object detection) was used as an indicator for
the overlap between the two boundary boxes. Accu-
racy and recall were computed using the following
formulae and those in Fig. 6.



The area under the curve (AUC) of the accuracy
plot was computed, and a recall plot was used to com-
pare specific performances. Padilla et al. explained
that localizers are considered good if they remain
highly accurate with increasing recalls. After interpo-
lating all points, the average precision (AP) was rec-
ognized as an approximate AUC of the accuracy vs.
recall curve shown in Fig. 7. In addition, the mean
average precision (mAP) and AP were used as met-
rics to compare the object positioning accuracy. mAP
is the average AP of all classes, where AP is obtained
from the following equation, p is the precision, and r

Table 2 Performance accuracy per class
Average Precision (AP)
stageS stage4 stage3
91.67% 79.24% 88.52%
83.74% 65.83% 40.00%
18.89% 3.45% 13.85%
64.77% 49.51% 47.46%

Class
heave
hole
fungi
mAP

stage2

83.33%
25.00%
16.67%
41.67%

Precision x Recall curve
Class: hole, AP: 57.12%

Interpolated precision {every point) |

—— Precision

precision

0.0 01 0.2 0.3 0.4 0.5 0.6
recall

Precision x Recall curve
Class: heave, AP: 87.88%

0.96

precision

0.92 1

=== Interpolated precision (every point)
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Fig. 7 Precision vs. recall curves for hole, heave, and fungi
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is the recall value:

j:p(r)Zdr

Table 2 summarizes the results obtained using
the SSD model. With the exception of “fungi,” over-
all mAP exceeded 60%, which showed that SSD was
effective, considering that the sample size was rela-
tively small. In particular, mAP exceeded 90% at all
stages for “heave” and was able to classify tree spe-
cies from a random test set. SSDs have limited detec-
tion for small objects, and it is therefore likely that
they cannot detect very small holes in a tree. Further-
more, the accuracy of “fungi” was 20%, although
fungi were the most common symptoms observed.
This was likely because fungi had varying colors,
patterns, and sizes, which are difficult to distinguish,
and were scattered around the tree trunk. This is
likely unrecognizable using SSD methods 'V 12,

4. SEMANTIC SEGMENTATION

DeepLabV3 was used for semantic segmenta-
tion because it is capable of generating finer and more
accurate segmented images for various classifica-
tions. DeepLabV3, an extension of DeepLab, can di-
vide the area of a tree into its heaves, holes, and fungi.
The shape, heaves, holes, and fungi were detected
separately, and the outputs were determined using
four different Als, which were integrated together to
determine the disease level. The pathological condi-
tion of the tree and its severity were analyzed by ex-
tracting the location and ratio of defects to the total
area of the tree. Fig. 8 shows the results of
DeepLabV3 for several different classifications.
Only pixels that matched the shapes were extracted.
Matches with the shape were computed using an
AND operation, and the heave+thole+fungi classifi-
cation was computed using an OR operation on the
pixel data 19,

Although the results outputted by DeepLabV3
appeared promising, the segmentation figures did not
necessarily help to make a decision as to whether to
cut down a tree or to monitor it for hazard risks.

Thus, a weighted calculation was formulated to
utilize the segmentation results to create a metric for
diagnosing supposedly ill trees. The weight value
was associated with each defect; weights correspond-
ing to holes had the highest value because holes indi-
cated an area of the tree that had already begun to rot.
Weights corresponding to heaves had the second-
highest weight because they are a sign that the tree
will begin to lose balance and potentially collapse.
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Fungi had the lowest weight since they were the most
abundant and did not pose much risk to the tree’s
health compared to holes.

During the calculation, the pixel areas of each
defect were taken from the segmented image and
used to compute a weighted sum (weight associated
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with each defect multiplied by its area cover). These
were subsequently divided by another weighted sum
(the weighted sum associated with the total area of
the tree multiplied by each weight). Using this result,
three thresholds were created for increasing severity
(levels 1, 2, and 3) and the trees were classified based
on which threshold the tree’s metric fell under.

With the Swift programming language,
coreML’s DeepLabV3 model was used to produce
overlays onto a tree image to show any signs of fun-
gal growth, heaves, or holes (Fig. 9). An overlay
named “shape” was also created to identify the tree
silhouette; this was used to compute the denominator
of the weighted sum. To test the model in a real-life
setting, a minimal user interface was designed (Fig.
9a), such that it would be straightforward for anyone
from any technical background. Upon opening the
app, there is a sample image showing a sample seg-
mented result on the top-half plane (Fig. 9a). One can
tap on “instructions” to obtain guidance regarding
how to use the app (Fig. 9b). In the bottom-half
plane, the user has the option to either import or take
a photo. By tapping the red play button at the bottom
of the screen, a segmented result will appear with a
legend referencing the color scheme. Each classifica-
tion had a dedicated color to allow the user to distin-
guish between different symptoms, and translucent
colors were used to allow the user to retain the origi-
nal image.

5. RESULTS

(1) Annotation Generation

To annotate the obtained images of trees taken on
the iPhone, an open-source labeling software called
LabelMe was utilized. Using this tool, images were
manually annotated using polygon annotations. Pol-
ygons were drawn over the section of the image
which contained a "hole,” heave,” or ’fungi” with
different colors respectively. Because fungi not only
have different textures and colors, but also grow un-
der the same conditions as moss, they require close
attention and detailed annotation '%.

(2) Training

To train DeepLabV3, PyTorch and NumPy li-
braries were initialized with random seeds. During
training, the weights were updated using stochastic
gradient descent (SGD). The training parameters
were initialized to 120 epochs, a batch size of 4, a
weight decay of 0.0001, and a momentum of 0.9. For
better performance, pretrained weights were bor-
rowed from ImageNet, and images were cropped to
513 x 513. Fig. 10a, b, ¢, and d shows the results after
training shape class on the DeepLabV3 model for



Table 3 Confusion matrix of 32 test images

Actual/Pred. Level 1 Level 2 Level 3
Level 1 6 4 0
Level 2 2 7
Level 3 0 0 11
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heave, hole, fungi, and shape detection. For example,
based on Fig. 10c¢, high accuracy was achieved with
little loss over 120 epochs. Fig. 10a shows that the
model has high IoU metrics that translate to high-
quality object detection '®,

(3) Testing

For testing, a small new dataset was constructed
containing sick trees diagnosed by professional ar-
borists and healthy trees. The dataset included images
classified into three categories: Level 1 (a healthy
state), Level 2 (requires monitoring for potential haz-
ard risks), and Level 3 (diagnosed with Witch’s
Broom Disease and designated to be cut down). Us-
ing the threshold values obtained from trial and error,
a confusion matrix was created to observe the number
of false positives and true positives generated by our
model. The thresholds were set such that higher av-
erages fell into categories of higher hazard risk sever-
ity.

Based on the results in Table 3, the classifier per-
formed well in predicting the correct class. However,
if a tree image matched the criteria specified in Fig.
3, it resulted in false predictions. For example, if an
image did not include the tree root, the classifier mis-
represented part of the tree trunk as a heave, which
resulted in a more pessimistic result. Thus, in the Ul
in Fig. 9a, an “instructions” tab was included to pro-
vide a guide on the type of tree images that the user
should import (Fig. 9b).

(4) Comparison

There is mno clear distinction between
DeepLabV3, CNNs, and SSDs since the three types
do not have an overlapping performance metric.
However, each model provides a different qualitative
insight which helps in tree diagnosis.

DeepLabV3 has taken advantage of both CNNs
and SSDs, which ultimately makes it ideal for identi-
fying the locations of illnesses on a tree. Similar to
the nature of CNNSs, the results of segmented objects
were used to construct weighted averages to calculate
the final predicted class. DeepLabV3 was able to vis-
ualize defects in the tree better than the SSDs because
the objects were labeled with colored polygons.

(5) Limitations

Among the three problem features (holes,
heaves, and fungi), holes were easily identified be-
cause of their dark color, and heaves were identified
because of their outline silhouette. However, fungi
were difficult to detect because of variations in color,
shape, and texture. When the image resolution was
low, the classifier had difficulty distinguishing tex-
tures between healthy bark and fungi. Moreover,
when the image was shaded, the darker portions of



the image were sometimes classified as ’fungi” even
if there was no growth. To identify fungi accurately,
resolution and lighting also had to be considered
when choosing the test images. Furthermore, alt-
hough our model did not consider any tilt in the angle
between the tree and ground due to the lack of test
images, the incline of the tree should additionally be
considered in future studies.

6. CONCLUSION

In this pilot study, several different techniques
were used to make fast, educated decisions on
whether a tree would cause potential risk. First,
CNNs run into inaccuracies because both trees and
their defects appear in various shapes and sizes. Sec-
ond, although SSDs performed better in localizing
the tree’s defects with bounding labels, they were still
inaccurate because the localization output was lim-
ited to bounding boxes. Third, DeepLabV3 produced
the best results for the classification of tree hazard
risks. It was flexible in classifying various shapes and
allowed a new method of illness classification. Out-
put color-coded overlays made it possible to differ-
entiate defects. This led to a new method using seg-
mented areas and computing weighted averages to
classify trees based on a set threshold.

Although street tree diseases could cause haz-
ards in urban environments, few studies have been
conducted to automate tree hazard risk assessments.
With the advent of applications to remote sensing and
agriculture, this study applied state-of-the-art classi-
fication models to solve this problem. In future work,
tuning the weights of each defect and threshold val-
ues will lead to a new learning problem. This pilot
study tuned the values through trial and error; how-
ever, this process could be further optimized using a
neural network.
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