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Abstract—Detecting signals is often presented as a simple
and solved problem. However, signal detection is typically not
the only goal, as signal localization in time and frequency is
often desired. This detection and localization process must also
occur in the presence of non-ideal radio frequency (RF) receiver
effects such as receiver non-flat noise floors, front-end inphase-
quadrature (IQ) imbalance, local oscillator (LO) leakage, and in
some cases power saturation. A robust signal detection system
must overcome these hardware impairments and report only
signals that correspond to true emitter devices. Additionally,
some unspoken requirements take the form of detecting signals
that are below the noise floor, very narrowband, very wideband,
bursty, or frequency hopping. We present Searchlight, a signal
detection system that solves these problems by using novel
techniques that enable classical signal detection to work well
using software defined radios (SDR). Performance results are
presented for synthetically generated and over-the-air (OTA) data
sets, which were obtained using commercially available hardware
in a complicated signal scenario. Searchlight is shown to be an
important enabler for true spectral monitoring platforms that
desire to detect anomalous signals or apply machine learning
(ML) algorithms to classify the various types of wireless activity
in a given area.

Index Terms—Detection, Spectrum Analysis, Spectral Estima-
tion, Polyphase Channelizer

I. INTRODUCTION

Detecting the presence of wireless energy is required by
every wireless device in today’s electronic world. For example,
to transfer data using Wi-Fi, Bluetooth, LTE, 3G/4G/5G/6G,
GPS, and any modern communication protocol, wireless ac-
cess points must first detect the presence of a packet header,
align to this header, and then decode the data. You might
wonder, if this problem is so centrally important to our
wireless lives, shouldn’t it be solved by now? The answer
to this question is that it depends on the amount of shared
information between the transmitter and receiver

In 2020, the IARPA securing compartmented information
with smart radio systems (SCISRS) program was announced
[1]. The goal of SCISRS is to detect and characterize radio
frequency (RF) anomalies between 100 MHz and 6 GHz to se-
cure data in sensitive government spaces from wireless threats.
Thus, it is not possible to rely on matched filters or other
detectors that require prior knowledge to operate. An energy
detector does not require prior knowledge, however, using an
energy detector across 6 GHz of spectrum is difficult due to
the varying nature of the signal protocols, modulations, and
activity in the various bands. For example, the 2.4 GHz band is

very active and contains multiple signal types simultaneously.
Alternatively, spectrum in the 3.5 GHz region is typically less
active. The same parameterized detector in all bands will not
yield good results. Fig. 1 shows a portion of the time/frequency
(TF) plane with many different signals coexisting.

Searchlight operates across 6 GHz of spectrum to detect RF
anomalies and is designed to meet the following requirements

1) Detect and localize (in TF) above and below noise floor.
2) Detect energy in any band from 100 MHz to 6 GHz.
3) Blind detection of signals.
4) Transform localized regions of energy from TF to time

for further classification via machine learning (ML).
In Sect. I-A we present related works for signal detection.

Sect. II describes the model of the incoming signal for a
receive radio. Sect. III describes our solution to the detection
problem, Searchlight. Sect. IV describes how the system is
designed to be configured to allow detection across 6 GHz of
spectrum. Sect. V presents Searchlight detection performance
using synthetic and over-the-air data, and ablation studies
to show how Searchlight algorithms improve upon standard
techniques. Finally, Sect. VI presents the conclusion.

A. Related Work

Signal detection can be categorized into five main strategies;
energy detection, matched filter detection, cyclostationary de-
tection, covariance-based detection, and ML based detection
[2]. Energy detectors have existed since the advent of radar
during WWII. The theory of energy detection has also been
well understood since the 1960’s [3]. Research into energy
detection systems today focus on improving the performance
of energy detectors by finding optimal thresholds [4]–[6].
Overlooked is the process of defining how energy detection
is implemented when signal properties like bandwidth and
on-time are unknown. If detecting below noise floor signals
is important, these issues matter. In addition, a discussion of
how energy detection performance can depend on the signaling
scenario in a particular band, whether it is highly congested or
not, is overlooked. There is also very little information on the
overall system requirements to implement an energy detection
system that works with hardware on over-the-air data. Other
improvements to energy detectors have been explored by
improving the estimate of the power spectral density using
techniques like wavelet transforms [7], [8]. While wavelets
can improve the ability of a system to resolve signals in
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certain regimes, it is not clear if they can be used to improve
performance when signals of interest exist throughout the
entire band, because at lower frequencies wavelet transforms
produce poor time resolution, and at high frequencies they
produce poorer frequency resolution [9]. Referring to Fig. 1,
there are signals that exist at 0 MHz, -45 MHz, +45 MHz,
and all frequencies in between. We cannot tile this space using
wavelets without losing potentially valuable information at one
TF, in favor of gaining information at another. Unless you can
assign more value to a set of TF, it is not clear how one
would use a wavelet transform to improve overall spectral
resolution. Additionally, wavelet transforms do not support
localized signal inversion as readily as the STFT, due to the
non-uniform TF tiling of wavelet transforms. For example, it
is not clear how the rectangles in Fig. 4 would be estimated
and inverted using a scalogram.

Matched filters are known to be the optimal form of
detection [10], but they require prior knowledge of the signal
you are trying to detect. Cyclostationary based cycle detectors
[11], [12] can outperform the energy detector in colored noise,
however, they are difficult to use when prior knowledge of
a signals cycle frequencies are unknown. They also tend
to be computationally expensive for the general detection
scenario and do not support inversion of the detected and
localized signal to the time domain for further classification.
Covariance based detectors use subspace decomposition to
separate signal from noise by thresholding eigenvalues of the
samples’ covariance matrix [13], [14] which does not work
well in low SNR scenarios since finding a proper threshold
value becomes difficult. It also suffers from computational
complexity related to computing eigenvalues, inhibiting its use
in real-time systems. Deep learning based detection [15]–[17]
is difficult to train for anomaly detection since anomalies by
definition are unexpected signals. In addition, the domain gap
between performance using synthetic data and performance
over-the-air (OTA) is a serious problem, and remains an
unsolved problem for ML in RF detection.

II. SYSTEM MODEL

With the goal of detecting individual signal energy at any
center frequency, any bandwidth, and any on-time, that enters
the antenna in the sub 6 GHz band, we will now present the
model for the combined signal that makes our assumptions
and task clear. The generalized passband signal model in a
time varying multipath fading channel is

xp(t) = A(t) cos(2πfct+ ϕ(t)) ∗ hp(t, τ) , (1)

where fc is the carrier frequency, ϕ(t) is a time varying carrier
phase, A(t) is a time varying amplitude,

hp(t, τ) =

L−1∑
ℓ=0

aℓ(t)δ(τ − τℓ(t)) , (2)

is the passband channel model for a non-stationary fading
multipath channel with L paths, τℓ(t) and aℓ(t) are the time-
varying delay and gain in the ℓth path respectively.

Fig. 1: A synthetic example of a complicated scenario in
which many signals of varying powers, lengths, and

bandwidths coexist in one batch of collected samples.

A receiver will downconvert the passband signal to base-
band and sample the signal using an analog-to-digital converter
(ADC). Suppose the receiver downconverts the received signal
using a frequency f ′

c, where fc − f ′
c = ∆f represents the

carrier frequency offset (CFO). Now, suppose a sample period
of T ′

s is used by the ADC, where Ts represents the optimal
sampling period. In addition, let α represent an offset in time
from the optimal starting time for the sampling process, where
α ≤ T ′

s. Then Ts−T ′
s represents the sampling frequency offset

(SFO) and α the sampling time offset (STO). The equivalent
sampled complex baseband representation [18] of the received
signal (1) incorporating these offsets can be expressed as

x(n) =

L−1∑
ℓ=0

aℓA(nT ′
s + α− τℓ)e

jϕ(nT ′
s+α)

e−j2π∆fnT ′
se−j2π∆fαe−j2πfcτℓ ,

(3)

where the dependence of aℓ and τℓ on t has been dropped.
The detection system will collect N samples at any de-

tection cycle. Within these N samples, there can exist M
independent signals, denoted x1(n), x2(n), · · · , xM (n), each
modeled by (3) with an appropriate set of parameters. An
example spectrogram showing many signals within N samples
of collected data is shown in Fig. 1. The final form of the
received signal model becomes

y(n) =

M∑
m=1

xm(n) + w(n) , (4)

where w(n) is (potentially colored) Gaussian noise. The goal
of Searchlight is to detect all xm(n) in the presence of
w(n) and all unknown parameters. For each detected xm(n),
Searchlight estimates bandwidth, on-time, SNR, and reverts
these regions to time domain to enable further classification.

III. PROPOSED SOLUTION: SEARCHLIGHT

Searchlight is a framework that solves the problem of de-
tecting and localizing in the TF plane, all energies between 100
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MHz and 6 GHz, while overcoming several challenges. The
processing flow diagram for Searchlight is shown in Fig. 2.
First, hardware impairments of radio receivers create “ghost”
energies. These are copies of energy from one frequency to an-
other that leads to false detects if unaccounted for. Searchlight
implements a set of techniques to correct such impairments.
Second, hardware radio receiver’s noise floor is non-flat and
sometimes correlated. Accurate noise estimation is key to
detecting signals that are below the noise floor, and Searchlight
uses a novel technique to estimate the noise floor accurately.
Third, radio receivers can sample signals at wideband, often
as high as 100 MHz. Such wideband sampling creates the
need for further localization in the TF plane. Searchlight
uses a combination of convolution, power rate estimation, and
sequential cancellation to achieve signal localization. Finally,
the detected and localized region of the TF plane should
be reverted back to band-limited complex baseband samples
to enable further classification and/or parameter estimation.
Searchlight achieves this using a polyphase synthesis filter.

Searchlight is designed to process streaming inphase-
quadrature (IQ) samples in chunks of N , as supplied by a
software defined radio. We will describe the various forms of
processing these N samples go through shortly. If Searchlight
detects M signals, after the processing is completed, then
Searchlight’s output will consist of an IQ baseband representa-
tion of each of these signals within their localized region of the
TF plane. In addition, metadata corresponding to start time,
stop time, frequency low, frequency high, and SNR will be
outputted for each detected IQ sequence. These are referenced
with respect to the radio’s time reference and center frequency.

A. Hardware Impairment Removal

There are three major problems that the analog front-end of
a radio can impart on a digital stream of samples that detrimen-
tally affect energy detection performance; power saturation, IQ
imbalance, and DC offset. If these effects are not accounted
for, detection performance will suffer. The following describes
how Searchlight solves the problem.

1) Overcoming Front-End Power Saturation : Power satu-
ration occurs when the input signal power is too high. High
power input can be the result of the gain of the receiver being
too high, the placement of the antenna being too close to the
emitter, or the emitter power being very high. Given any of
these situations, voltage levels at the input to the ADC will
largely map to the highest positive or negative bits at the output
of the ADC, a phenomenon known as clipping. As a result of
this non-linear transformation, energy becomes spread over
wide regions of frequency, leading to incorrect localization
and missed detects due to energy overlap.

Power saturation cannot be corrected after clipping has
occurred at the ADC due to information loss. Our approach
is to detect that saturation has occurred in the current sample
stream, and prevent future occurrences in later streams. To
do this, the chunk of raw (unprocessed) IQ is separated into
a series of subchunks. Within each subchunk, the number of
samples above a saturation threshold is counted, and a ratio of
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Fig. 2: The Searchlight processing steps from raw IQ input
to boxed energy metadata at the output.

saturated samples to total samples is formed. The saturation
threshold is a percentage of the full-scale range of the front-
end ADC, and saturation is declared if the ratio rises above
the saturation ratio threshold in a subchunk. The saturation
level is defined as the average fraction of subchunks that were
saturated within a full chunk. It was found that subchunks of
length 10e3, saturation threshold of 0.9, and saturation ratio
threshold of 1e-3 work well in practice. If one subchunk is
saturated, the entire chunk is declared to be saturated, and
Searchlight commands the radio to lower the front-end gain.
Saturation detection and gain reduction iterate until power
saturation is no longer detected.

2) Overcoming IQ Imbalance: One of the core functions
of analog front-ends in a radio is to down convert signals
from the passband to an intermediate or baseband frequency.
As a result, low-cost receivers are enabled by reducing high-
frequency routing and allows for lower-frequency ADCs to
be used. Lowest-cost radios downconvert from passband to
baseband before sampling, requiring separate analog paths to
represent the inphase and quadrature portions of the signal.
These independent analog paths impart different gains and
cause a non-orthogonal phase between them. These imper-
fections cause IQ imbalance [19], and the net effect is to
create attenuated copies of true emitter energy to the conjugate
frequency. These energies do not exist outside the receiver, and
thus are referred to as “ghost” energies. In the spectrogram,
it is not possible to distinguish between “ghost” energies and
real energies, because there is not enough information to make
that decision once the phase has been stripped. Therefore, IQ
imbalance must be corrected before the spectrogram is created.

To correct IQ imbalance after sampling, Searchlight mea-
sures the average gain on the I and Q parts of the complex
signal and applies a correction to them so that they are equal. It
then measures the average phase difference between the I and
Q parts and applies a correction in the form of phase rotation
so that they are orthogonal on average. These corrections
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are estimated and applied to each IQ chunk, so that if IQ
imbalance parameters change from chunk to chunk, they are
always effectively removed.

3) Overcoming DC Offset: DC offset, which is narrowband
energy centered at zero frequency, occurs for a variety of
reasons inside radios. One major contributor is the local
oscillator of a mixer mixing with itself via coupling between
the input ports, creating what appears like a strong signal in the
center of the spectrogram that will be detected and localized.
Therefore, DC offset must be removed or accounted for, and
there are two ways to achieve this. The first approach is to use
a narrowband filter centered at DC to filter out the LO leakage
contribution. The problem with this approach is that it filters
all energy centered at DC, not just energy caused by DC offset.
Consequently, contiguous energies that span DC appear like
two distinct non-contiguous energies, and lead to false alarms.
The second approach is to tune the center frequencies of the
radio such that the spectrum of interest does not align with
the center frequency of the radio, a technique known as offset
tuning. For example, if the desired range of frequencies span
20 MHz from 200 MHz to 220 MHz, the radio can be tuned to
a center frequency of 197 MHz using a sample rate of 50 MHz.
In this way, all frequencies from 200 MHz to 220 MHz will not
coincide with DC before ADC sampling. Once digitized, the
stream can be downsampled and re-centered, producing better
results at the expense of requiring higher receiver sample rate.
Searchlight utilizes offset tuning to avoid DC offset.

B. Channogram and Noise Estimation

For Searchlight’s detection and time and frequency localiza-
tion requirements, it is necessary to transform the time domain
IQ samples into a time and frequency representation to support
natural searches over both degrees of freedom. The short-time
Fourier transform (STFT) is ubiquitously used to support this
type of search. The downside to using the STFT is that it
distorts the frequency domain content through the choice of
window used in the processing [20]. For example, the N -point
FFT of a stream of N samples, sampled at fs, produces a
fundamental frequency resolution limit of fs/N . As a result
of windowing, the fundamental limit will be degraded by
the choice of window and the dynamic range of the signals.
The channogram, a super-resolution algorithm that overcomes
this windowing degradation of the fundamental frequency
resolution, was introduced in [21], and is used to replace the
STFT, while maintaining the same computational complexity.
Using previously corrected samples, Searchlight computes the
channogram, a polyphase channelizer based estimate of the
spectrogram, for a chunk of samples.

To determine if a set of samples contains signal or noise
only, an estimate of the noise floor is required. Searchlight
produces a noise floor estimate using the channogram, and sets
a relative threshold to test if the total energy in the detector
rises above or below it. The height of the threshold above the
noise floor determines the probability of false alarm (PFA)
and probability of detection PD. A robust and well known
estimator for the noise floor is the median absolute deviation

(MAD) estimator [22]. MAD is robust because it rejects out-
liers in the data such as large narrowband line noise. However,
it depends on the median, which means that if less than 50%
of the samples are noise-only, the estimate will become poor.
In regions of the spectrum that are congested, shown in Fig. 1,
the signal sample count can become more than the noise-only
count. When this happens the detector would underperform
expectations or fail. To overcome this, Searchlight uses the
minimum instead of median to estimate the noise floor. With
the minimum, a noise floor estimate can be made when almost
the entire chunk of IQ contains signal. To do this, Searchlight
first performs upfront averaging to smooth the channogram,
selects the minimum k samples, discards the lower m of this
batch, and applies an empirical correction (that was found to
work in practice) to transform the minimum to a mean value
estimate. The minimum method works very well in practice
and is robust across many signal scenarios for noise estimation.
A performance comparison between the minimum and median
based estimators is presented in Sect. V.

When samples are collected from hardware platforms, the
assumption of a flat noise floor is often not met. In radios, there
are analog filters that introduce correlations between samples,
also known as noise coloring. If a minimum or median based
noise estimator is applied to colored noise, it will produce very
poor estimates. To account for this, Searchlight divides the
band into subbands so that within each subband, the noise floor
appears to be flat. The noise estimator is then applied to each
subband and a parametric fit is made to combine the collection
of estimates in each subband into one noise floor model.
Using this noise floor model, the noise floor is subtracted from
the channogram at each channel frequency and passed to the
detector. Thus, non-flat coloring is effectively removed from
the channogram in preparation for signal detection.

C. Detection

Energy detection has been studied since the advent of radar
technology during WWII. Similarly, effective mathematical
models have been published for almost as long [3]. What has
not been addressed as thoroughly in the literature, is how to
apply theory to maximize the probability of detection when no
prior information is known. For example, the typical binary
hypothesis test formulation of the energy detection problem
assumes that when the signal exists, the energy detector length
exactly matches the length of the signal and the signal occupies
the detector’s full band. If these conditions are not satisfied, the
detector being used is sub-optimal and signals may be remain
undetected. A useful relationship between the probability of
detection (PD), PFA, detector length (N ), and SNR at an
energy detector input [23] is given by

Pd = Q
(
Q−1(Pfa)−

√
NSNR

)
, (5)

where Q() is the Q-function for a normal distribution. While
this equation is an approximation, it is applicable for most
SNR and N experienced in practice. It also motivates the
need to maximize the SNR within a detector of length N to
maximize the probability of detection for a given probability
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of false alarm. To maximize the SNR, non-overlapping noise,
in both time and frequency, should be rejected. Of course, the
problem of interest is to differentiate signal from noise, so
how can noise be rejected before detecting the signal? This
seems like a chicken and egg problem. Fortunately, there is
a path forward that Searchlight uses to sidestep this problem
that will be discussed next.

Using Parseval’s theorem, we know how to compute the
energy of a signal in either the time domain, x(n), or the
frequency domain, X(k),

N−1∑
n=0

|x(n)|2 =
1

N

N−1∑
k=0

|X(k)|2 . (6)

In the TF plane, summing frequency samples across multiple
rows is an extension of Parseval’s theorem. The process of
summing entire rows together to compute the energy can be
modified to summing those regions that lie within a rectangle
in the plane, producing an estimate of the energy over a limited
portion of time and frequency. A visualization is shown in
Fig. 3 where three line plots and the TF plot correspond
to the same underlying time domain IQ sequence. Limiting
the vertical height of the rectangles in the time/freq plane
corresponds directly to the horizontal width of the rectangles
in the time domain. Limiting the horizontal width of the
rectangles in the time/freq plane cannot be visualized in the
time domain, but is equivalent to a passband filter.

Detector length translates to the total number of TF bins
(or pixels) contained within the rectangle, also known as
the time-bandwidth product. Therefore, if a large number of
convolution kernels is chosen with varying time-bandwidth
products, detector length is searched over in addition to time
and frequency. If every possible rectangle that fits within the
channogram is exhaustively searched, every possible energy
detector that can be applied to the time domain samples is also
explored. Searchlight uses this relationship to apply a large set
of detectors to every chunk of IQ, making undetected signals
less likely. Using this technique, Searchlight is able to detect
below noise floor as well as above noise floor signal energy.

When the time-bandwidth product of a convolution kernel
gets larger, non-contiguous energies can start bleeding into
one another. If the kernel simultaneously overlaps them, it
will lead to imprecise or incorrect detection and localization.
To combat this, Searchlight uses a successive detection and
cancellation procedure to remove energies from the channo-
gram as they are detected. The search through convolution
kernels always begins with small and ends with large time-
bandwidth products, ensuring that high power energies are
found first and canceled. The peak value of the convolution
output is found and the boxing process begins. From here,
we move left/right/up/down from the peak, while computing
the rate of change of power. When the power rate change
surpasses a threshold, a box edge is declared. After four edges
are estimated, pixels within the box are zeroed out, and a new
round of convolution is made using the same kernel over the
new channogram until no more peaks are found above the
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Fig. 3: Visual representation of rectangles in the time
domain to rectangles in the TF plane.

detection threshold. At this point, the next convolution kernel
is repeatedly selected until all kernels are exhausted.

D. IQ Revert and Parameter Estimation

When all energies have been detected and localized, there
are three remaining functions that Searchlight is designed
to provide; overall rate reduction, reverting the TF localized
region to the time domain, and parameter estimation for
each localized energy. Rate reduction is important because
it frees resources on the host computer for other operations
such as signal classification, or lowers network congestion if
Searchlight results are sent to a centralized processing node.
Reverting TF samples to time domain enables classification
algorithms, requiring time domain data, to be used. Finally,
parameter estimation for useful/required information can assist
in decision making for further classification.

Searchlight transforms each energy localized region of
the channogram back into IQ time domain samples using a
synthesis polyphase channelizer as described in [21]. Such
information is useful for algorithms that require time domain
samples for further classification. For example, a strip spectral
correlation analyzer [24], a form of cyclostationary estima-
tor, requires time domain samples to estimate the spectral
correlation density (SCD). The SCD can then be passed
through a neural network to aid in further classification of each
detected and localized energy. Some examples of additional
labels might include the modulation, the protocol, and/or the
modality (single carrier, multi-carrier, dsss, etc.) for each
localized energy. This inversion of localized regions of the
channogram using a synthesis polyphase channelizer is much
more computationally efficient than accessing a stored version
of the original (high sample rate) IQ and filtering this in
separate stages. The work has already been done to transform
to the TF plane and determine the occupied bandwidth of the
signal, do not throw this away only to reproduce the processing
using a classical filtering method or approach.

Searchlight is capable of estimating parameters of detected
and localized energy. Currently, it estimates the SNR of each
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detected and localized energy by computing the total energy
within the rectangle, subtracting the estimated noise power
using the noise floor estimate in that region, and dividing this
difference by the noise power estimate in that region

SNR =
P̂box − P̂n

P̂n

. (7)

This is useful when trying to differentiate between energies
originating from different radios, or as another dimension
for clustering algorithms applied to all boxes. Additional
parameter estimates can easily be added to Searchlight.

IV. REAL-TIME RECONFIGURABILITY

Not all regions of spectrum are created equal. The spectral
content below 1 GHz takes on very different forms from the
spectrum at 2.4 GHz and then again from the spectrum at 5.7
GHz. Not only is the signal content different, but the noise
floor varies between these regions as well. Assuming that one
Searchlight configuration will work equally well at every part
of the spectrum from 100 MHz to 6 GHz will lead to failure.
Therefore, it supports real-time reconfiguration as the center
frequency changes. For each center frequency, a configuration
file is defined and loaded before processing.

We have identified the following parameters whose value
should depend on the center frequency of the collection

1) Assumed error in noise floor estimate - this value is
added to the detection threshold for fine tuning detection
performance. In regions of dirty RF, it should be made
larger to maintain the same level of PFA.

2) Boxing power rate threshold - the threshold that the
power rate change is compared to when determining the
edges of a box. Some regions of the spectrum contain
signals with faster power rate changes and some with
slower power rate changes.

3) Upfront averaging - the amount of smoothing that is
applied to the channogram before noise estimation and
detection takes place. A useful parameter that helps
produce reasonable boxes in complicated scenarios that
might otherwise be difficult to handle, even for a human.

Data was processed using Searchlight in 59 subbands,
ranging from 150 MHz to 5.95 GHz in steps of 100 MHz.
In regions below 1 GHz, many signals are always on. The
spectrum in these regions tends to be dirty, meaning there is a
lot of variation in energy that is difficult to attribute to a signal
or to noise. The assumed error in noise floor is raised to 0.6 dB
in the lower ends of this region, slowly lowering this value to
0.2 dB as the center frequency increases. Averaging in time is
increased to 2 ms to avoid producing multiple boxes, and the
power rate threshold is increased so that larger changes are
required to declare an edge. These settings produced better
overall boxing results for this region of frequencies.

For center frequencies between 3 GHz and 5 GHz, there is
mostly unused spectrum, in the San Diego area around UCSD.
Here, the assumed error in noise floor is reduced to 0.1 dB,
and the amount of averaging to 1 ms. The boxing power rate
threshold is also reduced so that box edges are declared sooner.

This is possible because the spectrum is clean and the energy
density is low, so there is less interference between energies
causing degradation in boxing below 1 GHz.

V. RESULTS

To evaluate detection systems that make claims like Search-
light, it is important to test sysntems over-the-air (OTA) and
against a number of signal scenarios that stress the system.
This ensures that the system is not independently tuned for one
scenario, to the detriment of all others. With this in mind, the
primary test scenario used to produce Searchlight performance
results is shown in Fig. 4. The SNR for all signals shown in the
figure is set to 10 dB so they can be visualized clearly. During
a test, the SNR would be lowered accordingly. The rectan-
gles drawn over the channogram correspond to Searchlight’s
detection and localization results, and numbered rectangles
correspond to various failure cases made by Searchlight.

There are five signal scenario zones defined in Fig. 4. The
first scenario on the bottom left, ranging from 0 ms to 50
ms and -50 to -25 MHz for a total of 10 rectangles, tests
below noise floor performance. These energies are modulated
using direct sequence spread spectrum (DSSS) modulation,
with SNR starting at 0 dB on the bottom left, falling to -
18 dB SNR on the top right. The second scenario to the
right of the first, ranging from 0 ms to 60 ms and -25 MHz
to 10 MHz, tests time resolution performance. These are
three different bandwidths of quadrature amplitude modulated
(QAM) energies whose spacing in time begins at 3 ms and
decreases to 4 µs from bottom to top. The next scenario at the
bottom right, ranging from 0 ms to 35 ms and 10 MHz to 50
MHz, tests varying time-bandwidth product energies. These
are QAM modulated signals ranging from a time-bandwidth
product of 4500 at the bottom right to 1 at the top left. The
region above this, from 35 ms to 60 ms and 10 MHz to 50
MHz, tests frequency resolution performance. The signals are
spaced 3 MHz to 100 kHz, from left to right. The final scenario
is found in the upper third of the channogram, ranging from 60
ms to 100 ms and -50 MHz to 50 MHz. This region tests for
snugglers, which consist of a pair of signals, the overt signal
and the snuggler. The overt is used as cover by the snuggler
to hide against. Snugglers in this region begin 2 MHz away
from their overt and end 0.5 MHz from their overt, from top
to bottom. The snugglers on time and relative location change
from left to right in this region. Searchlight was tested using
both synthetic (made purely from software) and OTA (signals
that underwent a physical transmitter, wireless channel, and
receiver) forms of the combined scenario shown in Fig. 4.
Searchlight performance is compared using this scenario to
determine the amount of degradation one can expect when
transitioning from synthetic to OTA data.

Performance results of synthetic data for the combined
scenario of Fig. 4, are shown in Table I. The cause of a lower
than expected PD can be explained by studying the failure
regions in Fig. 4. Failure region 1, shown as the white box
with a circled number 1 beside it, corresponds to Searchlight
making two boxes when it should have only made one. This
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Fig. 4: Detected energies within a channogram. Numbered
regions highlight failure modes that degrade TPR and FPR.

is referred to as a multibox failure, which tends to cause PFA

to increase, because the second box will not correspond to a
true signal, given that the first box will have been associated
with the truth already. Failure regions 2, 3, and 5 occur when
Searchlight is not able to resolve multiple energies as distinct,
and instead draws one rectangle containing the entire set. PD

drops as a result, because the one box will be associated with
only one of the enclosed truth signals, leaving the remainder
to be unassociated. This is a major failure source causing PD

to be lower than expected. The PD would be 95% or higher
if these failure scenarios were removed. Region 4 shows not
boxing an energy that is present with a time-bandwidth product
of 1, meaning the signal consists of one time domain sample.

Intersection over union (IoU), a measure of how well the
predicted rectangle overlaps the truth rectangle, can be a
misleading result for RF localization because the truth box
is defined using the 3 dB definition of bandwidth. This can
result in boxes that do not appear to capture a majority of the
signal energy on a log plot in the TF plane. Searchlight was
tuned to predict rectangles that capture 99% of visible energy,
leading to rectangles that tend to be larger than truth assuming
a 3 dB definition of bandwidth, and result in intersection over
union that deviate from close overlap. Searchlight allows for
rectangle prediction tuning if it is important that predicted
boxes match a particular truth bandwidth definition.

The frequency resolution, ∆f , and time resolution, ∆t, in
Table I correspond to the minimum resolutions before energies
are combined into one box. While it is certainly possible to
tune Searchlight for finer resolution results, it is more difficult
to do this while maintaining good performance across all
scenarios and bands. When SNR decreases, these resolutions
cannot be measured because the boxes are not always detected.
For these results, Searchlight used 1024 channels at a sample
rate of 100 MHz, corresponding to a fundamental frequency
resolution of 98 kHz and a fundamental time resolution of 4
µs. These limits are further degraded by the amount of upfront
averaging, four pixels in this case, resulting in resolutions

TABLE I
Detection performance per SNR for synthetic data.

SNR (dB) PD % PFA % IoU % ∆f (MHz) ∆t (ms)

10 66.4 10.7 60.02 0.8 0.6
−2 66.4 3.0 63.13 0.8 0.6
−4 64.3 1.5 62.86 1 0.6
−6 55.6 1.5 60.79 1.2 0.9
−8 31.2 1.2 60.01 — —

−10 8.9 0.7 62.31 — —
−12 1.2 0.2 45.59 — —

TABLE II
Detection performance per SNR for OTA data

SNR (dB) PD % PFA % IoU % ∆f (MHz) ∆t (ms)

10 54.2 12.8 55.3 0.8 0.6
−2 38.4 2.4 58.0 0.8 0.6
−4 36.4 1.7 56.0 1 0.6
−6 15.9 0.5 61.9 1.2 0.9
−8 4.3 0.09 66.8 — —

−10 0.27 0.29 26.8 — —
−12 0 0.50 0 — —

of 392 MHz and 16 µs, respectively. Finally, the power
rate threshold used when estimating box edges will degrade
resolution further. Degradation depends on a signal’s power
profile, if the signal’s power changes fast, less will occur.

Table II shows performance metrics against the scenario
shown in Fig. 1 OTA. There is degradation in performance for
the three main metrics. The degradation is attributed to two
major causes: 1. the wireless channel introducing effects that
cause multibox errors to occur and 2. how SNR is calibrated
between synthetic and OTA scenarios. Multipath fading, for
example, can cause one contiguous energy to appear as two
after passing through the channel. It is also difficult to tune
an OTA system to produce specific SNRs at the receiver.
The solution is to tune the receiver gain until a received test
signal matches the height above noise floor for corresponding
synthetic signals at a given SNR. Accuracy was within 1-2 dB
of true SNR on average, and IoU performance may be further
degraded by non-flat noise floor using OTA data.

To demonstrate improvement’s in detection performance,
an ablation study is performed by replacing one algorithm
at a time with different, standard approaches. Changes in
performance are plotted in Fig. 5. For this study, three specific
algorithms were tested; iteration through convolution kernel
size and shape, noise floor estimator, and the sequential detec-
tion and cancellation algorithm. The line labeled “Searchlight”
is Searchlight’s performance using the algorithms described
in Sect. III. “Fixed Kernel” refers to disabling the search over
convolution kernel size, done to utilize the optimal detector for
each energy, using only one fixed kernel instead. The figure
shows that this leads to a decrease in PD at each SNR. “K-
means” refers to replacing the successive detection and can-
cellation algorithm with a K-means clustering algorithm. All
points above the energy detection threshold are used to form
clusters. K-means is run for a sequentially increasing number
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Fig. 5: Ablation study performance comparison to
Searchlight.

of hypothesized means until the total error stops dramatically
decreasing. The K-means method produces poorer PD and
Pfa. “Noise - Median” refers to using a more standard median-
based noise estimator. While PD decreases when using the
median, the true advantage of the minimum estimator appears
when signals occupy more than 50% of a chunk’s pixels.
When this occurs, the median-based estimator fails, causing
a collapse in PD (not shown in the plot).

VI. CONCLUSION

This paper presents Searchlight, a novel detection frame-
work that enables detection and localization, in the
time/frequency plane, of energies above and below the noise
floor from 100 MHz to 6 GHz. This is achieved with a
combination of algorithms that allow Searchlight to operate
in the presence of hardware impairments, and to localize any
signal energy. Searchlight achieves a PD of 36% with a false
alarm rate of 1.7% using over-the-air data at -4 dB SNR in
a complicated scenario with over 200 energies. This includes
snugglers, close frequency, close time, small time-bandwidth
product, and below noise floor signals. In simpler scenarios
where energies are well-spaced, the PD increases dramatically.
Searchlight is a dependable detection system that can be
used with software defined radios to secure wireless spaces
and enable spectrum sharing. In future work, we will further
improve the detection performance in complicated scenarios
by introducing improvements to the energy detection process.
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